
MLS 1

Potential Show-Stoppers for
Transactional Synchronization

Panel session, PPoPP’07, March 2007

Michael L. Scott U Rochester
Ali-Reza Adl-Tabatabai Intel Corp
David Dice Sun Microsystems
Christos Kozyrakis Stanford U
Christoph von Praun IBM Research

MLS 2

Uniprocessor Limits

 Heat wall
 Limited ILP

http://www.tomshardware.com/2005/11/21

MLS 3

Multicore is here to stay

 Dual-processor laptops now
 Quad-core desktops
 8-core servers
 Lots more to come
 Vendors waiting for apps

MLS 4

The Coming Crisis

 Parallelism common in high-end scientific computing
» done by experts, at great expense

 Also common in Internet servers
» “embarrassingly parallel”

 Has to migrate into the
mainstream
» programmers not up

to the task

http://tfp.killbots.com/?p=wall/@wall&name=&pag=3

MLS 5

What TM is

 ﻿A way to simplify some forms of synchronization
— an alternative to mutual exclusion locks

 A way to improve scalability with respect to
coarse-grain locks

MLS 6

What TM is not

 A way to make parallel programming easy
 A general-purpose synchronization mechanism
 A way to get free concurrency (or even scalability)

MLS 7

﻿The basic idea is simple

 ﻿Programmer identifies atomic sections
 System serializes them, runs in parallel if it can

MLS 8

Some details are not simple

 ﻿I/O and other irreversible operations
 Open nesting: causality loops, compensating actions,

high-level concurrency control
 Weak isolation, privatization
 Early release
 Condition synchronization (retry, ...)
 Alternative paths (or else, ...)
 Customizable backoff or retry policies
 Synchronizers or other cross-transaction communication
 Priorities
 Segregation of transactional and nontransactional objects or

types, for the benefit of SW implementations

MLS 9

Not to mention

 ﻿Parallelization / identification of speculative tasks
 Ordering among transactions
 Performance tuning

» tools to find conflicts
» incentive to subdivide to avoid them

 When does this get uglier than locks?
(answer: very quickly)

 danger of overselling

MLS 10

Some personal experience

 Delaunay mesh application
» 2500 lines of C++
» barrier-separated private and

transactional phases
 RSTM library-based STM

» ﻿transactional types inherit from
transactional base class

» access through smart pointers

 Turned out to be a lot harder than I expected

MLS 11

A compiler would have helped
 Hide accessors, validators
 Generate transactional and non-transactional

versions of code as needed
 Let this be a smart pointer
 Leave immutable fields in place, for safe private

access; update read-only pointers as needed;
support safe break/return

 Catch loop-carried private value, potentially stale
private pointer

 Elide redundant checks

 All of this is straightforward

MLS 12

The Bottom Line

 Keep it simple!
 Don’t expect too much
 Plan on language integration

and compiler support

 Do not oversell !

www.cs.rochester.edu/meetings/TRANSACT07/

The Second ACM SIGPLAN
Workshop on Transactional Computing

To be held in conjunction with PODC 2007
Portland, Oregon, August 16, 2007

Submission deadline: April 15, 2007

This page intentionally left blank.

Potential Show-Stoppers for
Transactional Synchronization

PPoPP ’07 Panel Session

Ali-Reza Adl-Tabatabai

Programming Systems Lab

Intel Corporation

2

Killing the Feng Shui

TM promised to bring harmony
− Programmer declares atomicity
− System implements under the hood

But we made compromises

• Lock-free  lock-based

• Isolation & memory ordering

• Explicit locking & compensating actions

• Explicit function annotations

• Virtualized HW TM  HW acceleration

And we’ve only just begun...

3

More challenges remain

• Language & library integration

• Handling I/O

• Nested parallelism

• Communication

• Handling legacy code

• Real applications & large transactions

• Contention management

• Performance predictability

• Single thread overheads

• Performance & debug tools

• External transaction managers

• . . . I probably forgot something

4

Will transactions provide enough value when
we’re done?

5

The brighter side

• Databases have used transactions successfully for years
− There’s more we can learn here

• New languages supporting transactions from ground up
− Fixes some of the warts

• TM HW has other uses
− Speculative threading
− Speculative optimizations
− Speculative lock elision

• STMs might enable new features
− Debugging

6

Parting thoughts

• We’ve compromised some of TM’s elegance

• More research challenges remain

• Will it provide enough value over locks when
we’re done?

• Under promise so we can (over) deliver

This page intentionally left blank.

PPoPP-2007 1

Show-stoppers for Transactional
Memory

Dave Dice – blogs.sun.com/dave
J2SE Core Engineering
SunLabs Scalable Synchronization Group
PPoPP Panel 2007-3-15

PPoPP-2007 2

Concurrency

• Here today
• Explicit thread-level parallelism

– not a future
– a remedy with side-effects
– brings hope of performance
– and promise of complexity
– end of the lay-z-boy programming era

(David Patterson)

PPoPP-2007 3

Human scalability

• Today:
– lots of available cores
– small concurrency priesthood

• Programs – programmers
• Reduce complexity

– Eliminate common sources of errors
– Think sequentially, execute concurrently
– At least raise the abstraction level above

locks

PPoPP-2007 4

TM Critique

• Restrictions (as of today)
– large/long transactions
– IO and irrevocable state

• Single-threaded latency ?
– yes, it’s important

• Missing infrastructure:
– debugging, performance profiling

• Open issues:
– atomicity, nesting, exceptions

PPoPP-2007 5

Better than locks ?

• Wish: synchronized (Lock) {…}
• Not a drop-in-replacement
• decreased complexity; added constraints
• Better but not good enough
• Transactions won’t displace locks

– incremental adoption
• We’ll end up with both

– lock-aware transactions?

PPoPP-2007 6

A useful addition?

PPoPP-2007 7

Shared Mutable State

• Minimize shared mutable state
• Locks and transactions : immutable view
• Eliminate shared data
• Message passing: MPI, Erlang, etc
• 1 thread per address space
• Same programming model inter- & intra-node
• Can’t express common concurrency bugs
• Can you express large systems?

– old-school distributed programming

PPoPP-2007 8

Where does this take us?

• Locks + transactions + message passing
• Keep the lock abstraction

– Transparently Commute to transactions
– Revert to actual locks only as needed
– Complexity of coarse-grained locking
– Possibly better performance

This page intentionally left blank.

PPoPP'07 Panel

Potential Show-Stoppers for
Transactional Synchronization

Christos Kozyrakis

Computer Systems Lab
Stanford University

http://csl.stanford.edu/~christos

PPoPP'07 Panel

Ok, the base TM ideas look good;

what’s next?

Christos Kozyrakis

Computer Systems Lab
Stanford University

http://csl.stanford.edu/~christos

1. Apps & User Studies
 Are we really simplifying parallel programming?

 Let’s write new apps or get feedback from others

 What are the common cases and pattern?
 This is what we’ll make simpler, faster, …
 Are we sure TM is sufficient to address all of them?

 Casting lock-based apps in TM is dangerous
 Will fine-grain, rare transactions be common?

2. atomic{} is a primitive, not a
parallel programming model

 DB users program SQL, not atomic{}

 Need truly high-level programming models
 Simple & declarative like SQL, Mapreduce, …
 atomic{} will be critical in implementing them
 But it will probably take more than atomic{}

 Primitives for finding concurrency and handling locality,
coordination, scheduling, balance…

 Prog. environment = language + tools + libs
 Use TM to build better debugging/tuning tools
 See talk in next session for the libs issue

3. Atomicity ≠ Coordination
 TM is not a hammer for every nail

 Lots of work on forcing coordination into TM
 Open-nesting, escape actions, non-isolated transactions,

dependent transactions, …
 Use semantics get really ugly, really quickly
 Is it worth it? What do we expose to user and how?

 Simpler idea: use TM for what it is
 Transactions = atomicity + isolation
 Combine with other primitives to address other problems

4. Transactional memory & I/O
 TM is not a hammer for every nail

 We can have restricted I/O within TM but…

 Better idea: make TM work with other
transaction resources in the system
 DB, LFS, message queues, …
 System-level manager coordinates user transaction

across all resources
 Easier-to-use, flexible model with some restrictions

 Can this ever work?
 Look at IBM’s Quicksilver project

5. Beyond concurrency control

 Atomicity & isolation are generally useful
 For debugging, profiling, checkpointing,

exception handling, garbage collection,
security, speculation …

 These may be TM’s initial “killer apps”

 But they also change the requirements
 Cheap transactions for pervasive use
 “All transactions, all the time”

Miscellaneous TM Issues
 Language support: YES
 Compiler support: YES
 HW support: YES
 Strong atomicity: YES
 Contention management: YES
 Compensating actions: YES
 High-level concurrency control: YES
 …

 9am panels: NO

This page intentionally left blank.

Potential Show-Stoppers
for Transactional Synchronization

Christoph von Praun
IBM Research

PPoPP - March 15, 2007

Christoph von Praun

IBM T.J. Watson Research Center

PPoPP – Panel, March 15, 2007

Potential Show-Stoppers for
Transactional Synchronization

© 2004 IBM Corporation
2

3/15/07

1) Technical Challenges for TM

2) Environment, “Killer Apps“

© 2004 IBM Corporation
3

PPoPP - March 15, 2007

Technical challenges for TM

 Semantics and simplicity of the programming interface:
– handling of irreversible operations, compensation actions
– modularity and nesting
– conditional synchronization, communication with concurrent

transactions
– interaction of transactional and non-transactional code
– large transactions, contention management

 Performance and implementation:
– reduce overheads
– ‘right’ combination of software and hardware mechanisms

 tremendous progress over the past years

© 2004 IBM Corporation
4

PPoPP - March 15, 2007

Web-Services

 The growth field in commercial computing:
– large investments that can drive technological advances
– lots of web-service developers from emerging economies

 Programming model:
– “containerized” application frameworks, e.g., J2EE

(concurrency not exposed to programmer)
– “shared nothing architectures”, e.g., PHP, Ruby on Rails, ...

 very high pressure to develop scalable middleware

Multicore workloads (1/2)

© 2004 IBM Corporation
5

PPoPP - March 15, 2007

Web-Services continued ...

 Middleware is tuned for scalable concurrency now.
 Alternative technologies to enable scalable concurrency are becoming

common practice:
• non-blocking algorithms, libraries for concurrency utilities
• advanced locking schemes
• speculative lock elision
• read-copy-update, ...

 The bar for TM is rising: TM has to offer very significant advantage over
alternative technologies to justify cost of change.

• better programmability
• higher performance

 IT moves fast, timing matters
 TM currently behind the train

© 2004 IBM Corporation
6

PPoPP - March 15, 2007

Scientific applications
 Focused usage context

– programmers willing to rewrite some code
– semantic limitations of TM are acceptable

 Users care about performance
 Parallel computing and algorithms are established in the community

– several factors can limit scalability, TM may solve one of them

Game workloads [Tim Sweeney, POPL’06]
 Focused usage context

– (S)TM seems right match for parallel game simulation
– alternatives to transactional synchronization are unattractive

 Users care about simplicity of the programming interface,
programmability (rapid development)

Multicore workloads (2/2)

© 2004 IBM Corporation
7

PPoPP - March 15, 2007

Summary

 TM is a great technology
– technical challenges are not show-stoppers

 Success or failure of TM not only decided on technical merit

 Critical for widespread adoption of novel technology (TM) is
economic context (need “killer-application”)

 Different domains have different challenges:
– middleware for web-services: timing
– scientific applications: performance
– games: simplicity of the programming interface, programmability

© 2004 IBM Corporation
8

PPoPP - March 15, 2007

praun@us.ibm.com

